Search results for "Exchangeable random variables"
showing 3 items of 3 documents
Backwards Martingales and Exchangeability
2020
With many data acquisitions, such as telephone surveys, the order in which the data come does not matter. Mathematically, we say that a family of random variables is exchangeable if the joint distribution does not change under finite permutations. De Finetti’s structural theorem says that an infinite family of E-valued exchangeable random variables can be described by a two-stage experiment. At the first stage, a probability distribution Ξ on E is drawn at random. At the second stage, independent and identically distributed random variables with distribution Ξ are implemented.
Forward and backward diffusion approximations for haploid exchangeable population models
2001
Abstract The class of haploid population models with non-overlapping generations and fixed population size N is considered such that the family sizes ν1,…,νN within a generation are exchangeable random variables. A criterion for weak convergence in the Skorohod sense is established for a properly time- and space-scaled process counting the number of descendants forward in time. The generator A of the limit process X is constructed using the joint moments of the offspring variables ν1,…,νN. In particular, the Wright–Fisher diffusion with generator Af(x)= 1 2 x(1−x)f″(x) appears in the limit as the population size N tends to infinity if and only if the condition lim N→∞ E((ν 1 −1) 3 )/(N Var …
On (n-l)-wise and joint independence and normality of n Random variables: an example
1981
An example is given of a vector of n random variables such that any (n-1)-dimensional subvector consists of n-1 independent standard normal variables. The whole vector however is neither independent nor normal.